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INTRODUCTION 

Catalytic dehydrogenation i s  an important method f o r  determining the hydro- 
aromatic contents of coals,  coal ex t rac ts ,  and process solvents. Past investiga- 
t ions by others have focused on the dehydrogenation of coal. (1-4) Most of t ha t  
work was conducted w i t h  phenanthridine because i t  i s  a re la t ive ly  good solvent f o r  
coal and, a t  i t s  boiling point,  ca ta ly t ic  dehydrogenation usually proceeds a t  a 
rapid rate.  However. a l i t e r a t u r e  survey carried out by Neuworth has shown tha t  
secondary reactions such a s  those involving oxygenated s t ruc ture  ad a s i  gni f i  - 
quently, i n  the present work, we have attempted to  identify other, lower-boiling 
solvents suitable f o r  dehydrogenation in  order t o  minimize secondary reactions. 

dehydrogenation method and apply i t  t o  investigate the hydroaromatic contents of 
the coal,  coal ex t rac t ,  and process solvent used in  the Integrated Two-Stage 
Liquefaction (ITSL) process. 
materials i s  important i n  order t o  achieve an understanding of the structure of 
these materials and obtain an ins ight  i n to  the chemistry of the process. 
more, ca ta ly t ic  dehydrogenation i s  one of the best ways to  determine the donor 
quali ty o f  a process sol vent. 

EXPERIMENTAL 

cant impact on dehydrogenation resu l t s  a t  elevated temperatures. r !  5 Conse- 

The objective of the work described i n  t h i s  preprint was t o  develop a refined 

Determination of the hydroaromatic contents of these 

Further- 

The desired amount of substrate,  depending on i t s  estimated hydrogen content 

The dehydrogenation system 

(e.g., about 0.25 g for t e t r e l i n ) ,  i s  wei hed in to  a 4041 flask.  
the selected solvent, 0.55 g of ca ta lys t  9 5  w t .  X Pd on CaC03), and a pyrex- 
encased Alnico s t i r r e r  a r e  introduced In to  the flask. 
i s  then assembled a s  described i n  detail  i n  Reference 6. 
to  provide for  automatic data recording. 
in experiments which require overnight operation. 
lection burette a re  made of g lass  t o  minimize diffusion losses of hydrogen. 
sampling i s  provided fo r  by a gas collection port. 

switch. As gas i s  evolved by dehydrogenation of the sample, the small increase in  
pressure actuates the switch. When th i s  occurs, the c i r cu i t ry  i n  the motor/switch 
interface box turns on the motor fo r  a 10-s interval.  The motor i s  connected t o  a 
threaded rod carrying the leveling tube. Rotation of the rod reposit ions the bulb 
t o  balance the pressure increase. The top of the rod i s  attached t o  a 10-turn 
potentiometer through a reducer (48:l)  which reduces the number of turns required 
t o  achieve leveling to  the 10-turn capabili ty of t h e  potentiometer. Fifteen vol t s  
a re  imposed across the potentiometer by a precision power supply located i n  t h e  
motor/switch interface box. By connecting the potentiometer wiper and the neutral 
lead to  the recorder, the output voltage can be employed t o  define the posit ion o f  
the leveling bulb. Consequently. i t  provides a continuous recording of the  gas 
volume w i t h i n  the gas collection tube. 

Next, 7.50 g of 

This system was designed 
Such capabili ty i s  par t icu lar ly  useful 

Connections from the gas col-  
Gas 

Key t o  the unattended operation of t h i s  equipment i s  the mercury pressure 
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Elemental ana lys is  t o  determine C, H, N, S, and 0 content was p e r f o m d  us in  
a Perkin-Elmer Model 240C elemental analyzer. Number-average molecular weights 04 
the d i s t i l l a t e  f r a c t i o n s  were determined using vapor-phase osmometry (VPO) .  The 
molecular weight determinations as we l l  as the elemental analyses were conducted 
by Galbrai th Laboratories, Inc. 

Proton nuclear magnetic resonance (1H NMR) spectra were obtained w i th  a 
JEOL FX-60-9 Four ie r  t ransform NMR spectrometer using an observation frequency o f  
59.79 MHz. 
NMR samples and reference were contained i n  10-m tubes, w i th  a probe temperature 
of 30'C. 
14 +s, was u ed dur ing  mult ip le-scan accumulation. The pulse r e p e t i t i o n  t ime was 
6.0 s. The f H  spectra are referenced t o  tetramethyls i lane (TMS) a t  0.0 ppm 
chemical s h i f t  ( 6 ) .  

The 136 NMR spectra were recorded using lH-decoupling w i th  an i n te rna l  
deuterium lock  system u t i l i z i n g  10- sample tubes. 
mu l t i p le  scan accumulation corresponding t o  6 ps. 
2.0 s. 
the center peak o f  t h e  solvent a t  77.0 ppm and tetramethyls i lane a t  0.0 ppm. 

RESULTS AND DISCUSSION 

The spectra were recorded w i t h  an i n te rna l  deuterium lock  system. The 

Chloroform-d was the  solvent used. A 45' pulse, which corresponds t o  

A 45 pulse was used dur ing 
The pulse r e p e t i t i o n  time was 

The samples were dissolved i n  chloroform-d; the spectra were referenced t o  

The i n i t i a l  experiments were conducted w i th  model compounds. Tetra1 i n 
(1 ,2,3,4-tetrahydronaphthal ene) , 1 ,2,3,4.5.6.7,8-octahydrophenanthrene, and 
9.1 0-di hydroanthracene were used as substrates. 
quinol ine were tes ted  as solvents. 

Durene, t -methyl  naphthalene, and 
h i n o l i n e  was found t o  g ive  t e fas tes t  ra te  

o f  dehydrogenation and was used i n  most subsequent experiments. (6 F 
The middle d i s t i l l a t i o n  f r a c t i o n  (750-850'F) of the ITSL process solvent 

( I l l i n o i s  No. 6 coal, 8-in. PDU BTMS Run 108. 80/20 blend, June 17. 1983) was 
selected as the next m a t e r i a l  f o r  i nves t i ga t i on  by dehydrogenation. 
because p r i o r  charac ter iza t ion  by proton NMR had shown t h a t  i t  contained a sub- 
s t a n t i a l  percentage o f  hydroaromatic compounds. 
r i a l  was dehydrogenated using 1.1 g o f  Pd c a t a l y s t  i n  15 g o f  quinoline. 
evo lu t ion  r a t e  was approximately 0.15 m l h i n  during the f i r s t  day, and the exper i -  
ment was allowed t o  cont inue u n t i l  the r a t e  decreased t o  about 20% o f  t h a t  
observed i n i t i a l l y .  A f te r  5 days, the experiment was terminated on t h i s  basis. A 
t o t a l  of 270 m l  of gas was obtained. Based on the elemental analysis o f  t h i s  sol-  
vent f rac t ion  and t h e  quant i t y  used, i t  was ca lcu la ted  t h a t  11% o f  the t o t a l  
hydrogen i n  the sample was col lected. 

Elemental ana lys is  of the dehydrogenated process solvent showed an 11% loss 
of hydrogen. which Is consistent w i t h  the 11% loss  t h a t  was ca lcu la ted  based on 
the volume of gas c o l l e c t e d  and the sample amount. The number-average molecular 
weight determined by VPO f o r  the o r i g i n a l  and dehydrogenated process solvent were 
263 and 259. respect ively.  This r e s u l t  ind ica tes  tha t ,  as expected. the dehydro- 
genation procedure had no s i g n i f i c a n t  e f fec t  on the number-average molecular 
weight. 

The proton NMR spectra o f  the o r i g i n a l  d i s t i l l a t i o n  f rac t i on  o f  the process 
so lvent  and of the dehydrogenated mater ia l  are shown i n  Figures 1 and 2, respec- 
t i v e l y .  An increase i n  the  aromatic po r t i on  of the sample and a decrease i n  the 
a l i p h a t i c  po r t i on  as a r e s u l t  o f  the  dehydrogenation procedure are  evident. 
q u a l i t a t i v e  r e s u l t  i s  confirmed by Table 1 which presents the resu l t s  o f  the i n te -  
g r a t i o n  of the  spectra over cha rac te r i s t i c  proton regions. 

It was chosen 

Approximately 3 g o f  t h i s  mate- 
The gas 

This 
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Changes i n  the carbon d i s t r i b u t i o n  o f  t he  process solvent f r a c t i o n  as a 
r e s u l t  of dehydrogenation were determined by analyses o f  the  carbon-13 NMR spec- 
t r a .  The data are shown i n  Table 2. These data g i ve  add i t iona l  support t o  the  
observation o f  an increase i n  aromatic protons a t  the  expense o f  t he  a l i p h a t i c  
protons by i nd i ca t i ng  an increase i n  the  aromatic carbon a t  the  expense of  the 
a l i pha t i c  carbon. 

information w i t h  regard t o  the  main reac t ions  t h a t  take p lace  dur ing  c a t a l y t i c  
dehydrogenation. It was determined tha t ,  although the i n t e n s i t y  o f  the w e l l -  
defined O-al iphat ic absorpt ion a t  1.86 ppm was s t rong ly  reduced ( i n d i c a t i n g  the 
dehydrogenation o f  t e t r a l i n - l i k e  structures),  most ly a -a l i pha t i c  protons were 
el iminated dur ing dehydrogenation. The most probable s t ruc tu res  o f  t h i s  type 
which can pa r t i c i pa te  i n  the  dehydrogenation reac t ion  are 9.10-dihydrophenanthrene 
and 4,Sdihydropyrene. The chemical s h i f t  o f  the  -CHz-CH2-group o f  
9,10-dihydrophenanthrene i s  2.86 ppm. 
4,5-dihydropyrene i s  n o t  avai lable.  

The data i nd i ca te  t h a t  a t y p i c a l  reac t ion  which takes place i n  t h i s  system on 
c a t a l y t i c  dehydrogenation i s  the  l o s s  o f  hydrogen from 4.5-di hydropyrene-type 
s t ruc tu res  w i th  the  u l t ima te  format ion o f  pyrene o r  chrysene der iva t ives  o r  some 
o ther  s imi la r ,  more h igh l y  condensed aromatic compounds. To d i s t i ngu ish  between 
smaller (1-3 r i n g s )  and l a r g e r  (4+ r i n g s )  condensed aromatic systems, the aromatic 
absorption area was d iv ided i n t o  two sect ions a t  the  chemical s h i f t  value o f  7.85 
ppm, which corresponds t o  a minimum between two absorpt ion peaks a t  about 7.7 ppm 
and 8.0 ppm. This d i v i s i o n  app l ies  t o  most condensed aromatic hydrocarbons. 
(Anthracene i s  one exception; i t  has about equal absorptions i n  both regions.) 
The r e l a t i v e  absorpt ion i n t e n s i t i e s  i n  these sect ions o f  the  spectra o f  t he  
untreated and the dehydrogenated process solvent f rac t i ons  are shown i n  Table 3. 
As a r e s u l t  o f  the dehydrogenation, a considerable s h i f t  toward l a r g e r  condensed 
aromatic s t ruc tu res  has taken place. 

It was hypothesized t h a t  i f  a coal  i s  f i r s t  p a r t i a l l y  dehydrogenated and then 
subjected t o  depolymerization, t h i s  reac t ion  sequence may make i t  possible t o  d is -  
t i ngu ish  between c y c l i c  and acyc l i c  CH2-bridges i n  the coal. 
s t ruc tu res  would be rendered i n e r t  t o  depolymerization because o f  aromat izat ion i n  
the dehydrogenation reaction. Therefore, the  benzene-soluble f r a c t i o n  from the  
depolymerization o f  a dehydrogenated coal  would conta in  fewer Clip-bridges than 
the same product o f  the  d i r e c t  depolymerization o f  coal. A coal  dehydrogenation/- 
depolymerization experiment was there ore conducted, and the products were 
separated by solvent f rac t ionat ion .  (61 

product containing 36% more CH2-bridges than the depolymerization o f  the 
untreated coal .  Since c a t a l y t i c  dehydrogenation would have converted a t  l e a s t  a 
f r a c t i o n  o f  the c y c l i c  CH2-bridges t o  nonreact ive aromatic structures,  the 
increased amount o f  CH2-bridges i d e n t i f i e d  i n  the benzene-soluble f r a c t i o n  i n d i -  
ca te  t h a t  they o r ig ina te  from acyc l i c  br idge s t ruc tu res  i n  the coal .  
b l e  t h a t  a few more reac t ive  acyc l i c  CHZ-bridges have formed by the  c a t a l y t i c  
dehydrogenation of  hydroaromatic r i n g s  l i nked  t o  acyc l i c  CH2-bridges i n  the  
coal .  
r i n g  s t ruc tu res  corresponding t o  a t o t a l  formula weight o f  450. these acyc l i c  
CH2-bridges form the  l inkage i n  about 10 ut. Z o f  the  organic coal  mater ia l .  

w i thout  a substrate) i n  p a r a l l e l  wi th the  experiments described above.Td The 
main conclusions from these experiments are: 
of H2 occurs; (2) such H2 evo lu t i on  i s  be l ieved t o  be due t o  the  d imer iza t ion  

A more de ta i l ed  eva lua t ion  o f  the  spectra was made t o  ob ta in  add i t iona l  

The chemical s h i f t  o f  t h i s  group i n  

Cyc l i c  br idge 

Depolymerization o f  the  dehydrogenated coal  y ie lded 1G% more benzene-soluble 

It i s  possi-  

Assuming t h a t  each acyc l i c  CH2-bridge i s  l i n k e d  t o  aromatic/hydroaromatic 

Several con t ro l  experiments were conducted w i th  qu ino l ine  and c a t  1 s t  ( i .e. ,  

( 1 )  under these cond i t ions  evo lu t ion  
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o f  qu ino l ine  on the  basis o f  GC-MS data; (3) the  r a t e  o f  d imerizat ion o f  qu ino l ine  
depends on the  H2 concentrat ion o f  the atmosphere above the reactant; (4 )  conse- 
quently, t he  d imer iza t ion  r a t e  i s  g rea t ly  reduced when the  i n e r t  gas atmosphere i s  
replaced w i t h  Hp; (5 )  the  dimer formation i s  n o t  reve rs ib le  under the cond i t ions  
o f  the dehydrogenation react ion,  the dimer w i l l  s lowly accumulate i n  the  system; 
(6) quinol ine can be c a t a l y t i c a l l y  hydrogenated t o  form T i iQ  i n  t h i s  reac tor  system 
a t  a temperature below the  b o i l i n g  po in t  o f  quinol ine;  and (7) the presence o f  the 
process solvent suppresses hydrogen release by the  quinol ine.  Conclusion (7) I s  
supported by the  f a c t  t h a t  the  quant i t y  o f  gas evolved dur ing the  dehydrogenation 
o f  the process so lvent  f r a c t i o n  agreed we l l  w i t h  the  d i f fe rences  i n  the  hydrogen 
contents o f  the  o r i g i n a l  and dehydrogenated mater ia ls.  The presence o f  hydrogen 
from the substrate i n  the system markedly reduces the  hydrogen c o n t r i b u t i o n  from 
the  quinol ine dimerizat ion.  

w r i t t e n  as fo l lows: 
A t en ta t i ve  reac t ion  schematic of  the  qu ino l ine  d imer iza t ion  reac t ion  can be 

Reactions 1 )  and 2) a re  reversible.  Therefore, increased H p  p a r t i a l  pres- 

Therefore, the 
sure reduces the  r a t e  o f  format ion of the  qu ino l y l  rad i ca l ,  and thus, a l s o  the 
r a t e  o f  format ion o f  the  dimer. 
dimer w i l l  s lowly accumulate i n  the  solut ion,  w i t n  the  r a t e  o f  dimer formation 
depending on the  hydrogen pressure. 

Reaction 3) i s  no t  reversible.  
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Figure 1. Proton NMR Spectrum o f  750 t o  850°F F r a c t i o n  
o f  Process Solvent 

I 1 1 I I 
o e e . I e w  

I 

Figure 2. Proton NMR Spectrum o f  Dehydrogenated 750 t o  850'F 
F r a c t i o n  o f  Process Solvent 

331 



TABLE 1 
PROTON-TYPE DISTRIBUTIONS OF ORIGINAL AND 
DEHYDROGENATED PROCESS SOLVENT FRACTION* 

Aroma t i c  
(1-3 r ings,  6.9-7.85 ppm) 

Aromatic 
(4+ r ings ,  7.85-9.2 ppm) 

~~ ~ ~ ~~ 

O r ig ina l  Dehydrogenated 
S t ruc tu ra l  Region 1 Soi;;nt -1 Solvent 

( X )  

55 

45 

Aromatic 
6.0 t o  10.0 ppm 

2.0 t o  4.5 ppm 

1.0 t o  2.0 ppm 

0.0 t o  1.0 ppm 

J -A1 i p h a t i c  

0-A1 i phat i  c 

Y-A l iphat ic  

44 

25 

29 

2 

52 

17 

28 

3 

*750 t o  850'F 

TABLE 2 TABLE 3 
CARBON DISTRIBUTION I N  THE PROCESS 
SOLVENT FRACTION* BEFORE AND AFTER 

DEHYDROGENATION 

AROMATIC PROTON-TYPE DISTRIBUTION OF 
ORIGINAL AND DEHYDROGENATED PROCESS 

SOLVENT FRACTION 

I 
Carbon 1 D i s t r i b u t i o n  

'A1 
(0-68 ppm) 

( 108-200 ppml 
C A r  

I cHA 
(22-31 ppm) 

Or ig ina l  
F rac t i on  
(8) 

28 

72 

15  

Dehydro. 
genated 

(XI 

18 

82 

9 

Or ig ina l  

S t ruc tura l  Region 

I 

Dehydro- 
enated 
01 vent 
( X )  

! 

43 

57 

~ 

*75O-85O0F 
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